Automata theory - 2013

An example of an automaton. The study of the mathematical properties of such automata is automata theory

In theoretical computer science, automata theory is the study of mathematical objects called abstract machines or automata and the computational problems that can be solved using them. Automata comes from the Greek word α(τόματα meaning "self-acting".

The figure at right illustrates a finite state machine, which belongs to one well-known variety of automaton. This automaton consists of states (represented in the figure by circles), and transitions (represented by arrows). As the automaton sees a symbol of input, it makes a transition (or jump) to another state, according to its transition function (which takes the current state and the recent symbol as its inputs).

Automata theory is also closely related to formal language theory. An automaton is a finite representation of a formal language that may be an infinite set. Automata are often classified by the class of formal languages they are able to recognize.

Automata play a major role in theory of computation, compiler design, parsing and formal verification.

Automata
Following is an introductory definition of one type of automaton, which attempts to help one grasp the essential concepts involved in automata theory.

Informal description
An automaton is supposed to run on some given sequence of inputs in discrete time steps. At each time step, an automaton gets one input that is picked up from a set of symbols or letters, which is called an alphabet. At any time, the symbols so far fed to the automaton as input form a finite sequence of symbols, which is called a word. An automaton contains a finite set of states. At each instance in time of some run, the automaton is in one of its states. At each time step when the automaton reads a symbol, it jumps or transits to a next state that is decided by a function that takes current state and the symbol currently read as parameters. This function is called transition function. The automaton reads the symbols of the input word one after another and transits from state to state according to the transition function, until the word is read completely. Once the input word has been read, the automaton is said to have been stopped and the state at which automaton has stopped is called final state. Depending on the final state, it's said that the automaton either accepts or rejects an input word. There is a subset of states of the automaton, which is defined as the set of accepting states. If the final state is an accepting state, then the automaton accepts the word. Otherwise, the word is rejected. The set of all the words accepted by an automaton is called the language recognized by the automaton.

In short, an automaton is a mathematical object that takes a word as input and decides either to accept it or reject it. Since all computational problems are reducible into the accept/reject question on words (all problem instances can be represented in a finite length of symbols), automata theory plays a crucial role in computational theory.

Formal definition
An automaton is represented formally by a 5-tuple (Q,Σ,δ,q0,F), where:

· Q is a finite set of states.

· Σ is a finite set of symbols, called the alphabet of the automaton.

· δ is the transition function, that is, δ: Q × Σ → Q.

· q0 is the start state, that is, the state of the automaton before any input has been processed, where q0(Q.

· F is a set of states of Q (i.e. F (Q) called accept states.

Input word

An automaton reads a finite string of symbols a1,a2,...., an , where ai (Σ, which is called an input word. The set of all words is denoted by Σ*.

Run

A sequence of states q0,q1,q2,...., qn, where qi (Q such that q0 is the start state and qi = δ(qi-1,ai) for 0 < i ≤ n, is a run of the automaton on an input word w = a1,a2,...., an (Σ*. In other words, at first the automaton is at the start state q0, and then the automaton reads symbols of the input word in sequence. When the automaton reads symbol ai it jumps to state qi = δ(qi-1,ai). qn is said to be the final state of the run.

Accepting word

A word w (Σ* is accepted by the automaton if qn (F.

Recognized language

An automaton can recognize a formal language. The language L (Σ* recognized by an automaton is the set of all the words that are accepted by the automaton.

Recognizable languages

The recognizable languages are the set of languages that are recognized by some automaton. For the above definition of automata the recognizable languages are regular languages. For different definitions of automata, the recognizable languages are different.

[image: image2.wmf]A model of a finite automaton:

Example of finite automaton:

[image: image3.wmf]
Variant definitions of automata
Automata are defined to study useful machines under mathematical formalism. So, the definition of an automaton is open to variations according to the "real world machine", which we want to model using the automaton. People have studied many variations of automata. The most standard variant, which is described above, is called a deterministic finite automaton. The following are some popular variations in the definition of different components of automata.

Input

· Finite input: An automaton that accepts only finite sequence of symbols. The above introductory definition only encompasses finite words.

States

· Finite states: An automaton that contains only a finite number of states. The above introductory definition describes automata with finite numbers of states.

· Stack memory: An automaton may also contain some extra memory in the form of a stack in which symbols can be pushed and popped. This kind of automaton is called a pushdown automaton
Transition function

· Deterministic: For a given current state and an input symbol, if an automaton can only jump to one and only one state then it is a deterministic automaton.

· Nondeterministic: An automaton that, after reading an input symbol, may jump into any of a number of states, as licensed by its transition relation. Notice that the term transition function is replaced by transition relation: The automaton non-deterministically decides to jump into one of the allowed choices. Such automata are called nondeterministic automata.

Acceptance condition – for finite automaton

· Acceptance of finite words
· Automaton goes through the whole examined word and ends in some final state.

· Automaton goes through a part of examined word however ends in some final state.

Acceptance condition – for Pushdown automaton (PDA)

· Automaton goes through the whole examined word, ends in some state and with empty stack memory.

· Automaton goes through the whole examined word however ends in some final state and with no necessarily empty stack memory.

Automata theory
Automata theory is a subject matter that studies properties of various types of automata. For example, the following questions are studied about a given type of automata.

· Which class of formal languages is recognizable by some type of automata? (Recognizable languages)

· Are certain automata closed under union, intersection, or complementation of formal languages? (Closure properties)

· How much is a type of automata expressive in terms of recognizing class of formal languages? And, their relative expressive power? (Language Hierarchy)

Automata theory also studies if there exist any effective algorithm or not to solve problems similar to the following list.

· Does an automaton accept any input word? (emptiness checking)

· Is it possible to transform a given non-deterministic automaton into deterministic automaton without changing the recognizable language? (Determinization)

· For a given formal language, what is the smallest automaton that recognizes it? (Minimization).

Classes of automata
The following is an incomplete list of types of automata.

Automaton
Recognizable language

Nondeterministic/Deterministic Finite state machine (FSM)
regular languages

Deterministic pushdown automaton (DPDA)
deterministic context-free languages

Pushdown automaton (PDA)
context-free languages

Linear bounded automaton (LBA)
context-sensitive languages

Turing machine
recursively enumerable languages

Deterministic Büchi automaton
ω-limit languages

Nondeterministic Büchi automaton
ω-regular languages

Rabin automaton, Streett automaton, Parity automaton, Muller automaton
ω-regular languages

Applications
Each model in automata theory plays important roles in several applied areas. Finite automata are used in text processing, compilers, and hardware design. Context-free grammar (CFGs) are used in programming languages and artificial intelligence. Originally, CFGs were used in the study of the human languages. Cellular automata are used in the field of biology, the most common example being John Conway's Game of Life. Some other examples which could be explained using automata theory in biology include mollusk and pine cones growth and pigmentation patterns. Going further, a theory suggesting that the whole universe is computed by some sort of a discrete automaton, is advocated by some scientists. The idea originated in the work of Konrad Zuse, and was popularized in America by Edward Fredkin.

Automata Simulators
Automata simulators are pedagogical tools used to teach, learn and research automata theory. An automata simulator takes as input the description of an automaton and then simulates its working for an arbitrary input string. The description of the automaton can be entered in several ways. An automaton can be defined in a symbolic language or its specification may be entered in a predesigned form or its transition diagram may be drawn by clicking and dragging the mouse. Well known automata simulators include Turing’s World, JFLAP, VAS, TAGS and SimStudio.[1]
References
1. ^ Chakraborty, P., Saxena, P. C., Katti, C. P. 2011. Fifty Years of Automata Simulation: A Review. ACM Inroads, 2(4):59–70. http://dl.acm.org/citation.cfm?id=2038893&dl=ACM&coll=DL&CFID=65021406&CFTOKEN=86634854
2. ^ Jirí Adámek and Vera Trnková. 1990. Automata and Algebras in Categories. Kluwer Academic Publishers:Dordrecht and Prague
3. ^ S. Mac Lane, Categories for the Working Mathematician, Springer, New York (1971)
4. ^ http://planetmath.org/encyclopedia/CartesianClosedCategory.html Cartesian closed category
5. ^ http://planetmath.org/encyclopedia/SequentialMachine3.html The Category of Automata
6. ^ http://www.csee.wvu.edu/~jworthing/asl2010.pdf James Worthington.2010.Determinizing, Forgetting, and Automata in Monoidal Categories. ASL North American Annual Meeting,March 17, 2010
7. ^ Aguiar, M. and Mahajan, S.2010. "Monoidal Functors, Species, and Hopf Algebras".
8. ^ Meseguer, J., Montanari, U.: 1990 Petri nets are monoids. Information and Computation 88:105–155
9. ^ http://en.wikipedia.org/wiki/Groupoid#Category_of_groupoids Category of groupoids
· John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman (2000). Introduction to Automata Theory, Languages, and Computation (2nd Edition). Pearson Education. ISBN 0-201-44124-1.
· Michael Sipser (1997). Introduction to the Theory of Computation. PWS Publishing. ISBN 0-534-94728-X. Part One: Automata and Languages, chapters 1–2, pp. 29–122. Section 4.1: Decidable Languages, pp. 152–159. Section 5.1: Undecidable Problems from Language Theory, pp. 172–183.

· James P. Schmeiser, David T. Barnard (1995). Producing a top-down parse order with bottom-up parsing. Elsevier North-Holland.
· D'Souza, D. and Shankar, P. (2012). Modern Applications of Automata Theory. World Scientific Publishing, Singapore.
[edit] Further reading
· Salomaa, Arto (1985). Coputation and automata. Encyclopedia of Mathematics and Its Applications. 25. Cambridge University Press. ISBN 0-521-30245-5. Zbl 0565.68046.
· Sakarovitch, Jacques (2009). Elements of automata theory. Translated from the French by Reuben Thomas. Cambridge University
Pushdown automaton (PDA)

APDA = (Q, X, Z, (, q0, Z0, F(,

Q …set of states,

X … set of input symbols, ,

Z … set of store (storage, magazine, container) symbols,

(… transition function, (: (Q ((X ((e(((Z) (((Q (Z*),

q0 … initial state,

Z0 … initial store symbol.

F … set of ending states.

Example:

APDA = ((q1, q2(, (0, 1(, (Z0, A(, (, q1, Z0, ((((,

Transition function (:

1. ((q1, 0, Z0) = (q1, A),

2. ((q1, 0, A) = (q1, AA),

3. ((q1, 1, A) = (q2, e),

 4. ((q2, 1, A) = (q2, e),

 5. ((q2, e, Z0) = (q2, e).

Analyse word w = 0011e.

Step No.
State
Input symbol
The head of the storage
Content of the storage
Transition No.

1.
q1
0
Z0
Z0
1.

2.
q1
0
A
AZ0
2.

3.
q1
1
A
AAZ0
3.

4.
q2
1
A
AZ0
4.

5.
q2
e
Z0
Z0
5.

6.
q2
e
e
e

� EMBED Imaging.Dokument ���

� EMBED Imaging.Dokument ���

[image: image4.wmf][image: image5.wmf]_1474700271.bin

_1474700376.bin

