Stored procedures

Can be used to make application faster, or be prepared for re-use in application.

see. http://www.mysqltutorial.org/introduction-to-sql-stored-procedures.aspx

 Example of stored procedure :

CREATE PROCEDURE ListUsers()
BEGIN
SELECT * FROM users;
END

Problem: This declaration contains semicolon, and should be finished (to be saved to database) by semicolon.

Solution: the DELIMITER declaration:

DELIMITER $$

CREATE PROCEDURE ListUsers()
BEGIN
SELECT * FROM users;
END $$

DELIMITER ;

Can be executed by

CALL ListUsers();

see http://www.mysqltutorial.org/getting-started-with-mysql-stored-procedures.aspx

Variables

The variable definition looks like:

DECLARE variable_name datatype(size) DEFAULT default_value;

For example:

DECLARE goodsonstock FLOAT DEFAULT 0;

(without the default value will be initialized with a NULL value, so it cannot be used for adding a value and so on; it is not a problem, if the first use of the variable is to assign a value to it).
Example of use a variables in a stored procedure:

DELIMITER $$

CREATE PROCEDURE CountGoods()
BEGIN
 DECLARE x,y,@goodsonstock FLOAT DEFAULT 0;
 SELECT SUM(price * amount) FROM stockPrague INTO x;
 SELECT SUM(price * amount) FROM stockPilsen INTO y;
 SET @goodsonstock = x + y ;
 SELECT @goodsonstock ; -- result value
END $$

DELIMITER ;

@ as a first character in a variable name signs a “global” variable.
Outside stored procedures (for example,from the command line),
only this kind of variables can be defined:

SET @goodsonstock := 0;

Function

For a single value returning, the function is sometimes better; the value to return is selected by the RETURN statement:
DELIMITER $$

CREATE FUNCTION CountGoods()
BEGIN
 DECLARE x,y,goodsonstock FLOAT DEFAULT 0;
 SELECT SUM(price * amount) FROM stockPrague INTO x;
 SELECT SUM(price * amount) FROM stockPilsen INTO y;
 SET goodsonstock = x + y ;
 RETURN goodsonstock ; -- result value
END $$

DELIMITER ;

see http://www.mysqltutorial.org/variables-in-stored-procedures.aspx
For self study, very good tutorial is on the http://www.brainbell.com/tutorials/MySQL/Using_Stored_Procedures.htm

Example from this page:

CREATE PROCEDURE ordertotal(
 IN onumber INT,
 OUT ototal DECIMAL(8,2)
)
BEGIN
 SELECT Sum(item_price*quantity)
 FROM orderitems
 WHERE order_num = onumber
 INTO ototal;
END;

Formal parameters:
[IN | OUT | INOUT] var_name var_type[(size)]
... separated by “,” (comma).
Conditions, cycles

... not useable in a school type command.

see http://www.mysqltutorial.org/conditional-control-if-case-statement-stored-procedures.aspx

see http://www.mysqltutorial.org/stored-procedures-loop.aspx

Cursors

If you imagine a SELECT command, it can return more lines. To evaluate them in the stored procedures, we need some method how to browse through them.
The method is: to create a pointer called “cursor”.

Rather then executing the SELECT command, for example:

SELECT productCode FROM products;

... we will only declare a “cursor” by:

DECLARE cur_product CURSOR FOR SELECT productCode FROM products;

... then we can read just single line from the result (in this case even single value, because in the SELECT part is a name of only one column); as the first, we have to initiate the CURSOR – in real, to execute the SELECT itself somewhere on a background:

OPEN cur_product;

... and then read the result by repeating:

FETCH cur_product INTO prd_code;

... after reading the last value, next attempt to read will cause an error; for the stored procedure, it can be serious problem. To avoid it, we need to declare handler for the null result:

DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET no_more_products = 1;

... in real, this line has to be immediately behind the cursor declaration. The “no_more_product” variable should be set to zero before our cycle starts, and then checked in each loop.

To release the system memory, each useless “cursor” should be closed:

CLOSE cur_product;

It could be closed before all data is read, if they are no longer useable.

The complete example is on the page:
http://www.mysqltutorial.org/sql-cursor-in-stored-procedures.aspx
DELIMITER $$

DROP PROCEDURE IF EXISTS CursorProc$$

CREATE PROCEDURE CursorProc()

BEGIN

 DECLARE no_more_products, quantity_in_stock INT DEFAULT 0;

 DECLARE prd_code VARCHAR(255);

 DECLARE cur_product CURSOR FOR

 SELECT productCode FROM products;

 DECLARE CONTINUE HANDLER FOR NOT FOUND

 SET no_more_products = 1;

/* temporaly table for logging information */

 CREATE TABLE infologs (

 Id int(11) NOT NULL AUTO_INCREMENT,

 Msg varchar(255) NOT NULL,

 PRIMARY KEY (Id)

);

 OPEN cur_product;

 FETCH cur_product INTO prd_code;

 REPEAT

 SELECT quantityInStock
 INTO quantity_in_stock
 FROM products

 WHERE productCode = prd_code;

 IF quantity_in_stock < 100 THEN

 INSERT INTO infologs(msg) VALUES (prd_code);

 END IF;

 FETCH cur_product INTO prd_code;

 UNTIL no_more_products = 1

 END REPEAT;

 CLOSE cur_product;

 SELECT * FROM infologs;

 DROP TABLE infologs;

END$$

DELIMITER;
More explanation useful mainly for self study:

http://www.brainbell.com/tutorials/MySQL/Working_With_Cursors.htm

Nice explanation, but about the Oracle database, is on the address:
http://www.plsqltutorial.com/plsql-cursor/

[image: image1.png]

Database Auditing

Triggers

Trigger is a build-in procedure, which can be executed when an expected event will happen. The appropriate event can be:

· INSERT

· DELETE

· ALTER

The trigger can be executed before or after this operation.

The trigger is directly connected to table, cannot be used for more tables.

Result: For each table can be defined up to six triggers. No one event can be served by two triggers.

In the trigger, each value from the table, which should be changed by the event, is accessible in two versions:
The OLD structure, containing the original data

The NEW structure with data expected after event executing

Triggers can be used for checking data (keeping data consistent), or even for constructing application with so called accounted database (database accounting means, that every event is watched and recorded for the further control).

Trigger example on the MySQLTutorial.org:

The accounting type; the data will be saved to different table, before they will be changed.

First action – table creating (has to be done as the first):

CREATE TABLE employees_audit (

 id int(11) NOT NULL AUTO_INCREMENT,

 employeeNumber int(11) NOT NULL,

 lastname varchar(50) NOT NULL,

 changedon datetime DEFAULT NULL,

 action varchar(50) DEFAULT NULL,

 PRIMARY KEY (id)

)
Here will be the data saved. Trigger itself is a stored procedure:

DELIMITER $$

CREATE TRIGGER before_employee_update

 BEFORE UPDATE ON employees
FOR EACH ROW

 BEGIN

 INSERT INTO employees_audit

 SET action = 'update',

 employeeNumber = OLD.employeeNumber,

 lastname = OLD.lastname,

 changedon = NOW();

 END$$

DELIMITER ;

Trigger declaration contains the words: BEFORE, UPDATE and name of the table.

The example from the web:
http://www.mysqltutorial.org/create-the-first-trigger-in-mysql.aspx

Comment: Trigger can be very useful, but it is complicated to be debugged.

If there is some of a problem, the database can become non-working.

For the database use recording, there is a log file.

PREPARE, EXECUTE, DEALLOCATE PREPARE
see http://dev.mysql.com/doc/refman/5.0/en/sql-syntax-prepared-statements.html

In compare with build-in procedures, this method is intended for simpler problems.
In compare with views, parameters of function (i.e. select) can be changed while executing.

Comments
Comments in the SQL can look like:

 -- before this should be a space or the new line; till end of the line

 # only in MySQL, this will be comment (to end of the line)

 /* anything between this signs is a comment */
Note: data mining
Note: reserved words

Reserved words can be found, if you ask Google about:

mysql reserved words list
This should find the chapter 9.3 in MySQL manual, where you can find the following table:

(if you [mistakenly] use a reserved word for a table or a column name while creating a table, Micka will show a strange error)

Table 9.2. Reserved Words in MySQL 5.5.30

	ACCESSIBLE
	ADD
	ALL

	ALTER
	ANALYZE
	AND

	AS
	ASC
	ASENSITIVE

	BEFORE
	BETWEEN
	BIGINT

	BINARY
	BLOB
	BOTH

	BY
	CALL
	CASCADE

	CASE
	CHANGE
	CHAR

	CHARACTER
	CHECK
	COLLATE

	COLUMN
	CONDITION
	CONSTRAINT

	CONTINUE
	CONVERT
	CREATE

	CROSS
	CURRENT_DATE
	CURRENT_TIME

	CURRENT_TIMESTAMP
	CURRENT_USER
	CURSOR

	DATABASE
	DATABASES
	DAY_HOUR

	DAY_MICROSECOND
	DAY_MINUTE
	DAY_SECOND

	DEC
	DECIMAL
	DECLARE

	DEFAULT
	DELAYED
	DELETE

	DESC
	DESCRIBE
	DETERMINISTIC

	DISTINCT
	DISTINCTROW
	DIV

	DOUBLE
	DROP
	DUAL

	EACH
	ELSE
	ELSEIF

	ENCLOSED
	ESCAPED
	EXISTS

	EXIT
	EXPLAIN
	FALSE

	FETCH
	FLOAT
	FLOAT4

	FLOAT8
	FOR
	FORCE

	FOREIGN
	FROM
	FULLTEXT

	GRANT
	GROUP
	HAVING

	HIGH_PRIORITY
	HOUR_MICROSECOND
	HOUR_MINUTE

	HOUR_SECOND
	IF
	IGNORE

	IN
	INDEX
	INFILE

	INNER
	INOUT
	INSENSITIVE

	INSERT
	INT
	INT1

	INT2
	INT3
	INT4

	INT8
	INTEGER
	INTERVAL

	INTO
	IS
	ITERATE

	JOIN
	KEY
	KEYS

	KILL
	LEADING
	LEAVE

	LEFT
	LIKE
	LIMIT

	LINEAR
	LINES
	LOAD

	LOCALTIME
	LOCALTIMESTAMP
	LOCK

	LONG
	LONGBLOB
	LONGTEXT

	LOOP
	LOW_PRIORITY
	

	MATCH
	MAXVALUE
	MEDIUMBLOB

	MEDIUMINT
	MEDIUMTEXT
	MIDDLEINT

	MINUTE_MICROSECOND
	MINUTE_SECOND
	MOD

	MODIFIES
	NATURAL
	NOT

	NO_WRITE_TO_BINLOG
	NULL
	NUMERIC

	ON
	OPTIMIZE
	OPTION

	OPTIONALLY
	OR
	ORDER

	OUT
	OUTER
	OUTFILE

	PRECISION
	PRIMARY
	PROCEDURE

	PURGE
	RANGE
	READ

	READS
	READ_WRITE
	REAL

	REFERENCES
	REGEXP
	RELEASE

	RENAME
	REPEAT
	REPLACE

	REQUIRE
	RESIGNAL
	RESTRICT

	RETURN
	REVOKE
	RIGHT

	RLIKE
	SCHEMA
	SCHEMAS

	SECOND_MICROSECOND
	SELECT
	SENSITIVE

	SEPARATOR
	SET
	SHOW

	SIGNAL
	SMALLINT
	SPATIAL

	SPECIFIC
	SQL
	SQLEXCEPTION

	SQLSTATE
	SQLWARNING
	SQL_BIG_RESULT

	SQL_CALC_FOUND_ROWS
	SQL_SMALL_RESULT
	SSL

	STARTING
	STRAIGHT_JOIN
	TABLE

	TERMINATED
	THEN
	TINYBLOB

	TINYINT
	TINYTEXT
	TO

	TRAILING
	TRIGGER
	TRUE

	UNDO
	UNION
	UNIQUE

	UNLOCK
	UNSIGNED
	UPDATE

	USAGE
	USE
	USING

	UTC_DATE
	UTC_TIME
	UTC_TIMESTAMP

	VALUES
	VARBINARY
	VARCHAR

	VARCHARACTER
	VARYING
	WHEN

	WHERE
	WHILE
	WITH

	WRITE
	XOR
	YEAR_MONTH

	ZEROFILL
	MASTER_SSL_VERIFY_SERVER_CERT

Execute putty.exe , ... then:

mysql –h localhost –u alik –p

use alik;
CREATE TABLE `users` (

 `id` int(11) NOT NULL,

 `login` varchar(19),

 `pwd` varchar(19),

 `mail` varchar(64),

 PRIMARY KEY (`id`));
CREATE TABLE `userbak` (

 `id` int(11) NOT NULL,

 `login` varchar(19),

 `email` varchar(71),

 PRIMARY KEY (`id`)

);

insert into users values('2', 'novak', 'newmann', 'novak@novak.cz');

insert into users values('3', 'smith', 'secret', 'smith@login.com');

DELIMITER is a MySQL Client command, not SQL command, so...

DELIMITER $

CREATE TRIGGER any_name

 BEFORE DELETE ON users
FOR EACH ROW

 BEGIN

 INSERT INTO userbak
 SET login = OLD.login,

 email = OLD.email;

 END $

DELIMITER ;

[image: image2.jpg]

Autho-

rised

user

APPLI-�CATION

SQL�database

 programmer DB administrator

use putty to log in to server:

server:

olinka.fsid.cvut.cz

user: smith

pwd: tiger7

(same for putty and MySQL)

(in the command line client,

use Shift+Insert for clipboard)

_1393694213

