JAVA OPERATORS

GENERAL

Java provides a rich set of operators to manipulate variables. We can divide all the Java operators into the
following groups:

e Arithmetic Operators
e Relational Operators
e Bitwise Operators

e logical Operators

e Assignment Operators

e Misc Operators

ONLINE COMPILER

As there were certain problems with propper settings of NetBeams, | decided to demonstrate all examples
using on-line compiler and runner

http://www.browxy.com/

Please consider using this tool.

THE ARITHMETIC OPERATORS

Arithmetic operators are used in mathematical expressions in the same way that they are used in algebra. The
following table lists the arithmetic operators. Assume integer variable A holds 10 and variable B holds 20, then:

Operator Description Example
+ Addition - Adds values on either side of the operator A + B will give 30
- Subtraction - Subtracts right hand operand from left hand operand A - B will give -10
* Multiplication - Multiplies values on either side of the operator A * B will give 200
/ Division - Divides left hand operand by right hand operand B/ A will give 2

Modulus - Divides left hand operand by right hand operand and returns

o o
remainder B % A will give 0

++ Increment - Increases the value of operand by 1 B++ gives 21

-- Decrement - Decreases the value of operand by 1 B-- gives 19

Example

The following simple example program demonstrates the arithmetic operators. Copy and paste the following
Java program into Test.java file and compile and run this program:

public class Test {

public static void main(String args[]) {

int a = 10;
int b = 20;
int c = 25;
int d = 25;
System.out.printin(fa + b =" + (a + b));
System.out.printIn(Ca - b =" + (a - b));
System.out.printIn(fa * b "+ (a*b));
System.out.printIn(C'b 7 a ="+ (b /7 @));
System.out.printIin(Cb % a =" + (b % a));
System.out._printIn(C'c b a ="+ (c % a));
System.out.printIn(fa++ ="+ (att));
System.out._printIn(Cb-- ="+ (a--));

// Check the difference in d++ and ++d

System.out.printIn('d++ ="+ (d++));
System.out.printin(''++d ="+ (++d));
}
}
This would produce the following result:

a+b=230

a-b=-10

a*b = 200

b/a=2

b%a=0

c%a=5

a++ = 10

b-- =11

d++ = 25

++d = 27

THE RELATIONAL OPERATORS

There are following relational operators supported by Java language.
Assume variable A holds 10 and variable B holds 20, then:

Operator Description Example

Checks if the values of two operands are equal or not, if yes then condition (A ==

is not true.
becomes true.)

I= Checks if the values of two operands are equal or not, if values are not equal (A !=B) is true.

then condition becomes true.

Checks if the value of left operand is greater than the value of right operand, if (A > B) is not true.

> yes then condition becomes true.
Checks if the value of left operand is less than the value of right operand, if yes .

< o (A < B) is true.
then condition becomes true.

o Checks |f_the value of Ieft.qperand is greater than or equal to the value of right (A >= B) is not true.
operand, if yes then condition becomes true.
Checks if the value of left operand is less than or equal to the value of right .

<= . o (A <= B) is true.
operand, if yes then condition becomes true.

Example

The following simple example program demonstrates the relational operators. Copy and paste the following
Java program in Test.java file and compile and run this program. :

public class Test {

public static void main(String args[]) {
int a = 10;
int b = 20;
System.out.println(a =
System.out.printin(a !
System.out.printIn(ta > b =" + (a > b));
System.out.printIin(fa < b =" + (a < b));
System.out.printIn(b >= a =" + (b >= a));
System.out.printIn("'b <= a =" + (b <= a));

:b:"+(a::b));
=b="+(a'=b)):

}
3
This would produce the following result:

a == b = false

a = b = true

a > b = false

a < b = true

b >= a = true

b <= a = false

THE BITWISE OPERATORS:

Java defines several bitwise operators, which can be applied to the integer types, long, int, short, char, and

byte.

Bitwise operator works on bits and performs bit-by-bit operation. Assume if a = 60; and b = 13; now in binary
format they willbea = 0011 1100andb = 0000 1101.

a&b = 0000 1100
alb = 0011 1101
a”b = 0011 0001
~a = 1100 0011

The following table lists the bitwise operators. Assume integer variable A holds 60 and variable B holds 13 then:

Operator Description

&

<<

>>

>>>

Example

Binary AND Operator copies a bit to the result if it exists in both operands.

Binary OR Operator copies a bit if it exists in either operand.

Binary XOR Operator copies the bit if it is set in one operand but not both.

Binary Ones Complement Operator is unary and has the effect of 'flipping' bits.

Binary Left Shift Operator. The left operands value is moved left by the number

of bits specified by the right operand.

Binary Right Shift Operator. The left operands value is moved right by the

number of bits specified by the right operand.

Shift right zero fill operator. The left operands value is moved right by the
number of bits specified by the right operand and shifted values are filled up

with zeros.

Example

(A & B) will give 12
which is 0000 1100

(A | B) will give 61
which is 0011 1101

(A A~ B) will give 49
which is 0011 0001

(~A) will give -61
which is 1100 0011
in 2's complement
form due to a signed
binary number.

A << 2 will give 240
which is 1111 0000

A >> 2 will give 15
which is 1111

A >>>2 will give 15
which is 0000 1111

The following simple example program demonstrates the bitwise operators. Copy and paste the following Java

program in Test.java file and compile and run this program:

public class Test {

public static void main(String args[]) {

int a = 60;
int b = 13;
int c = 0;
c =aé&b;

/* 12 = 0000

System.out.printIn(fa & b = '

c=a]| b;

/* 61 = 0011

System.out.printIn(Ca | b =

c =a" b;

/* 49 = 0011

System.out.printin(fa ~ b = "

C = —a,

System.out.printin(‘'~a

C = a << 2;

/* 240

/*-61

oy

System.out.printIn(a << 2 =

cC = a > 2;

/* 60 = 0011 1100 */
/* 13 = 0000 1101 */

1100 */
+ cCc);

1101 */
+ cCc);

0001 */
+C);

1100 0011 */

c);

1111 0000 */

"+ c);

/* 215 = 1111 */

System.out.printIn(a >> 2 =" + c);

c = a >>> 2; /* 215 = 0000 1111 */
System.out.printin(a >>> 2 = " + c);

}
}

This would produce the following result:

THE LOGICAL OPERATORS

The following table lists the logical operators. Assume Boolean variables A holds true and variable B holds false,
then:

Operator Description Example

Called Logical AND operator. If both the operands are non-zero, then the

= condition becomes true. (e Bk
Called Logical OR Operator. If any of the two operands are non-zero, then the .
I o (A]| B) is true.
condition becomes true.
| Called Logical NOT Operator. Use to reverses the logical state of its operand. | (A && B) is true
) If a condition is true then Logical NOT operator will make false. ’ ’
Example

The following simple example program demonstrates the logical operators. Copy and paste the following Java
program in Test.java file and compile and run this program:

public class Test {

public static void main(String args[]) {
boolean a = true;
boolean b = false;

System.out.printIn(f'a & b = " + (a&&b));
System.out._printIn(a || b = " + (a]lb));
System.out.printIn(*!1(a && b) = " + I(a && b));

This would produce the following result:

a && b = false
a ||l b= true
1(a && b) = true

THE ASSIGNMENT OPERATORS

There are following assignment operators supported by Java language:

Operator Description

%=

<<=

>>=

Example

Simple assignment operator, Assigns values from right side operands to left
side operand

Add AND assignment operator, It adds right operand to the left operand and
assign the result to left operand

Subtract AND assignment operator, It subtracts right operand from the left
operand and assign the result to left operand

Multiply AND assignment operator, It multiplies right operand with the left
operand and assign the result to left operand

Divide AND assignment operator, It divides left operand with the right operand
and assign the result to left operand

Modulus AND assignment operator, It takes modulus using two operands and
assign the result to left operand

Left shift AND assignment operator

Right shift AND assignment operator

Bitwise AND assignment operator

bitwise exclusive OR and assignment operator

bitwise inclusive OR and assignment operator

Example

C = A + B will assign
value of A+ Binto C

C += A is equivalent
toC=C+A

C -= Alis equivalent
toC=C-A

C *= A is equivalent
toC=C*A

C /= A is equivalent
toC=C/A

C %= A is equivalent
toC=C%A

C <<= 2 is same as
C=C<<2

C >>=2 is same as
C=C>>2

C&=2issameasC
=C&2

CAr=2issameas C
=Cn2

C|=2issameasC
=C|2

The following simple example program demonstrates the assignment operators. Copy and paste the following

Java program in Test.java file and compile and run this program:

public class Test {

public static void main(String args[]) {
int a = 10;
int b = 20;
int ¢ = 0;

c =a+ b;

System.out.printIn(CCcc = a+b ="+ c¢c)

c += a ;
System.out.printIn(C'c +=a =" + c);

c -=a ;
System.out.printIn(‘'c -=a = " + c);

c *= a ;
System.out.printIn(‘'c *=a =" + c);

a = 10;
c = 15;
c /= a ;
System.out._printIn(C’c /= a =" + c);

a = 10;
c = 15;
c %= a ;
System.out.printIn(''c %= a =" + c);

C<<:2;
System.out.printIn(f'c <<= 2 =" + c);

C>>:2;
System.out.printIn(’’c >>= 2 = " + c);

C>>:2;
System.out.printIn(C'c >>= a =" + c);

c & a ;
System.out.printIn(f'c &= 2 =" + ¢);

c ™= a ;
System.out.printIn("'c ~=a ="+ c);

c |=a ;
System.out.printIn(C'c |=a ="+ ¢);
}
}

This would produce the following result:

*

1
JSURESNL R O R G R O]
1
w
o
o

O0O0O0000000O0
=S
|

c |=a 10

MISCELANEOUS OPERATORS

There are few other operators supported by Java Language:
Conditional Operator (? :)

Conditional operator is also known as the ternary operator. This operator consists of three operands and is
used to evaluate Boolean expressions. The goal of the operator is to decide which value should be assigned to
the variable. The operator is written as:

variable x = (expression) ? value if true : value if false

EXAMPLE
public class Test {

public static void main(String args[]){
int a , b;
a = 10;
b=(C==1) ? 20: 30;
System.out._printin("Value of b is : " + b);

b = (a==10) ? 20: 30;
System.out.printIn("vValue of b is : " + b);

}
}

This would produce the following result:

Value of b is :© 30
Value of b is : 20

instanceOf Operator

NOTE
This is only for documentation purposes.

This operator is used only for object reference variables. The operator checks whether the object is of a
particular type(class type or interface type). The instanceOf operator is wriiten as:

(Object reference variable) instanceOf (class/interface type)

If the object referred by the variable on the left side of the operator passes the IS-A check for the
class/interface type on the right side, then the result will be true. Following is the example:

EXAMPLE

String name = = "James”;
boolean result = name instanceOf String;
// This will return true since name is type of String

This operator will still return true if the object being compared is the assignment compatible with the type on
the right. Following is one more example:

EXAMPLE
class Vehicle {}

public class Car extends Vehicle {
public static void main(String args[]){
Vehicle a = new Car();
boolean result = a instanceof Car;
System.out.printin(result);

}
}

This would produce the following result:

true

PRECEDENCE OF JAVA OPERATORS

Operator precedence determines the grouping of terms in an expression. This affects how an expression is
evaluated. Certain operators have higher precedence than others; for example, the multiplication operator has
higher precedence than the addition operator.

Example

Forexample,x = 7 + 3 * 2; here xis assigned 13, not 20 because operator * has higher precedence than
+, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest appear at
the bottom. Within an expression, higher precedence operators will be evaluated first.

Category Operator Associativity
Postfix () [] - (dot operator) Left to right
Unary ++--1~ Right to left

Multiplicative *1 % Left to right
Additive + - Left to right
Shift >> >>> << Left to right
Relational >>=< <= Left to right
Equality ==]I= Left to right

Bitwise AND & Left to right

Bitwise XOR
Bitwise OR
Logical AND
Logical OR
Conditional
Assignment

Comma

=4=-= *= /= %=>> = <<= &: A= |=

Left to right
Left to right
Left to right
Left to right
Right to left
Right to left
Left to right

CONTROL STRUCRURES

There may be a situation when we need to execute a block of code several number of times, and is often
referred to as a loop.

Java has very flexible three looping mechanisms. You can use one of the following three loops:
e while Loop
e do...while Loop
e for Loop

As of Java 5, the enhanced for loop was introduced. This is mainly used for Arrays and we will not explain it.

while Loop

A while loop is a control structure that allows you to repeat a task a certain number of times.

SYNTAX:

The syntax of a while loop is:

while(Boolean_expression)

{
//Statements

}

When executing, if the boolean_expression result is true, then the actions inside the loop will be executed.
This will continue as long as the expression result is true.

Here, key point of the while loop is that the loop might not ever run. When the expression is tested and the
result is false, the loop body will be skipped and the first statement after the while loop will be executed.

EXAMPLE
public class Test {

public static void main(String args[]) {
int x = 10;

while(x < 20) {
System.out.print("'value of x - " + x);
X++;
System._out._print(*’\n");

}

}

}

This would produce the following result:
value of x : 10
value of x : 11
value of x : 12
value of x : 13
value of x :© 14
value of x : 15
value of x : 16
value of x : 17
value of x : 18
value of x : 19

do ... while Loop

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to execute at least one
time.

SYNTAX:

The syntax of a do...while loop is:

do

{
//Statements

} while(Boolean_expression);

Notice that the Boolean_ expression appears at the end of the loop, so the statements in the loop executes
once before the Boolean is tested.

If the Boolean expression is true, the flow of control jumps back up to do, and the statements in the loop
execute again. This process repeats until the Boolean expression is false.

EXAMPLE:
public class Test {

public static void main(String args[]){
int x = 10;

do{
System.out.print('value of x : " + x);
X++;
System.out._print(*'\n"");
Iwhile(x < 20);
}
}

This would produce the following result:

value of x : 10
value of x : 11
value of x : 12
value of x : 13
value of x :© 14
value of x : 15
value of x : 16
value of x : 17
value of x : 18
value of x : 19

The for Loop:

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a
specific number of times.

A for loop is useful when you know how many times a task is to be repeated.

SYNTAX:

The syntax of a for loop is:

for(initialization; Boolean_expression; update)

{
//Statements

}

As you can see, for consist of three parts, or steps.

The initialization step is executed first, and only once. This step allows you to declare and initialize any loop
control variables. You are not required to put a statement here, as long as a semicolon appears.

Next, the Boolean expression is evaluated. If it is true, the body of the loop is executed. If it is false, the body of
the loop does not execute and flow of control jumps to the next statement past the for loop.

After the body of the for loop executes, the flow of control jumps back up to the update statement. This
statement allows you to update any loop control variables. This statement can be left blank, as long as a
semicolon appears after the Boolean expression.

The Boolean expression is now evaluated again. If it is true, the loop executes and the process repeats itself
(body of loop, then update step, then Boolean expression). After the Boolean expression is false, the for loop
terminates.

EXAMPLE:
public class Test {

public static void main(String args[]) {

for(int x = 10; x < 20; x = x+1) {

System.out.print(*'value of x - " + X);
System._out_print(*'\n");

3
}
3
This would produce the following result:

value of x :© 10
value of x : 11
value of x : 12
value of x : 13
value of x :© 14
value of x : 15
value of x : 16
value of x : 17
value of x : 18
value of x : 19

The break Keyword:

The break keyword is used to stop the entire loop. The break keyword must be used inside any loop or a switch
statement.

The break keyword will stop the execution of the innermost loop and start executing the next line of code after
the block.

SYNTAX:
The syntax of a break is a single statement inside any loop:

break;

EXAMPLE:
public class Test {

public static void main(String args[]) {
int x;
for(x=0; x<=50; x++) {
if(x=3){
break;
3
System.out.print(x);
System.out.print(''\n"");
}
}
s

This would produce the following result:

0

=

The continue Keyword:

The continue keyword can be used in any of the loop control structures. It causes the loop to immediately
jump to the next iteration of the loop.

In a for loop, the continue keyword causes flow of control to immediately jump to the update statement.

In a while loop or do/while loop, flow of control immediately jumps to the Boolean expression.

SYNTAX:
The syntax of a continue is a single statement inside any loop:

continue;

EXAMPLE:
public class Test {

public static void main(String args[]) {
int [] numbers = {10, 20, 30, 40, 50};

for(int x : numbers) {

if(x == 30) {
continue;

3
System.out._print(x);
System.out._print("'\n'");

s

}
3

This would produce the following result:

10
20
40
50

DECISION MAKING

There are two types of decision making statements in Java. They are:

e if statements

e switch statements

The if Statement:

An if statement consists of a Boolean expression followed by one or more statements.

SYNTAX:

The syntax of an if statement is:

if(Boolean_expression)

{

//Statements will execute 1T the Boolean expression is true

}

If the Boolean expression evaluates to true then the block of code inside the if statement will be executed. If
not the first set of code after the end of the if statement (after the closing curly brace) will be executed.

Example:
public class Test {

public static void main(String args[]){
int x = 10;

if(x < 20){
System.out.print(""This is if statement™);

}
}
}

This would produce the following result:

This is if statement
The if...else Statement:

An if statement can be followed by an optional else statement, which executes when the Boolean expression is
false.

SYNTAX:
The syntax of an if...else is:

if(Boolean_expression){
//Executes when the Boolean expression is true

Yelse{

//Executes when the Boolean expression is false

}

Example:
public class Test {

public static void main(String args[]){
int x = 30;

if(x < 20){
System.out.print("'This is if statement');
Yelse{

System.out.print("'This is else statement™);

}
}
}

This would produce the following result:

This is else statement

The if...else if...else Statement:

An if statement can be followed by an optional else if...else statement, which is very useful to test various
conditions using single if...else if statement.

o When using if, else if , else statements there are few points to keep in mind:
e Anif can have zero or one else's and it must come after any else if's.
e Anif can have zero to many else if's and they must come before the else.

e Once an else if succeeds, none of the remaining else if's or else's will be tested.

SYNTAX:
The syntax of an if...else is:

if(Boolean_expression 1){

//Executes when the Boolean expression 1 is true
}else if(Boolean_expression 2){

//Executes when the Boolean expression 2 is true
}else if(Boolean_expression 3){

//Executes when the Boolean expression 3 iIs true

Yelse {

//Executes when the none of the above condition is true.

}

EXAMPLE:
public class Test {

public static void main(String args[]){
int x = 30;

if(x == 10){
System.out._print(*'Value of X is 10");

Yelse if(x == 20){
System.out._.print("'Value of X is 20");
Yelse if(x == 30){
System.out.print("'Value of X is 30");
Yelse{

System.out._print("'This is else statement');

}
}
}

This would produce the following result:

Value of X is 30

Nested if...else Statement:

It is always legal to nest if-else statements which means you can use one if or else if statement inside another if
or else if statement.

SYNTAX:
The syntax for a nested if...else is as follows:

if(Boolean_expression 1)

{

//Executes when the Boolean expression 1 is true
if(Boolean_expression 2)

{

//Executes when the Boolean expression 2 is true

}
}

You can nest else if...else in the similar way as we have nested if statement.

EXAMPLE:
public class Test {

public static void main(String args[]){
int x = 30;
int y = 10;

if(x == 30){
ifCy == 10){
System.out.print(’X = 30 and Y = 10");
}
3
3
3

This would produce the following result:

X =30 and Y = 10

The switch Statement:

A switch statement allows a variable to be tested for equality against a list of values. Each value is called a case,
and the variable being switched on is checked for each case.

SYNTAX:
The syntax is:

switch(expression){
case valuel :
//Statements
break; //optional
case value2 :
//Statements
break; //optional
//You can have any number of case statements.
default : //0Optional
//Statements

}

The following rules apply to a switch statement:
e The variable used in a switch statement can only be a byte, short, int, or char.

e You can have any number of case statements within a switch. Each case is followed by the value to be
compared to and a colon.

e The value for a case must be the same data type as the variable in the switch and it must be a constant
or a literal.

e When the variable being switched on is equal to a case, the statements following that case will
execute until a break statement is reached.

e When a break statement is reached, the switch terminates, and the flow of control jumps to the next
line following the switch statement.

Not every case needs to contain a break. If no break appears, the flow of control will fall through to
subsequent cases until a break is reached.

A switch statement can have an optional default case, which must appear at the end of the switch. The default
case can be used for performing a task when none of the cases is true. No break is needed in the default case.

EXAMPLE:
public class Test {

public static void main(String args[]){
char grade = "C~;

switch(grade)
{
case "A" :
System.out.printIn("Excellent!");
break;
case "B" :
case "C" :
System.out.printIn(**Well done™);
break;
case "D" :
System.out.printIn(*'You passed™);
case "F" :
System.out._printIn(*'Better try again'™);
break;
default :
System.out.printIn("'Invalid grade');
}

System.out.printIn("'Your grade is

+ grade);
}
}

This would produce the following

Well done
Your grade is a C

